AP PHYSICS 1 | Curriculum Map and Pacing Guide

COURSE DESCRIPTION: This course is designed to be the equivalent of the first semester of an introductory algebra-based college course. Students master foundational physics principles while engaging in science practice to foster deeper understanding. This course requires 25 percent of time spent in laboratory work. This course explores topics, such as Newtonian mechanics, rotational motion, work, energy and power, machanical waves and equivalent of the ductory eigenvelocement.	Course SCI351 1 year, 1.25 credit Grades 11-12 Prerequisite: Honors Chemistry, Algebra II
mechanical waves and sound, optics and introductory simple circuits.	

QUARTER 1

Topic: Kinematics

Key Terms: reference frame, time interval, position, displacement, distance, path length, average velocity, instantaneous velocity, uniform acceleration, scalars, vectors, free fall, motion, slope, position vs time graphs, velocity vs time graphs, acceleration vs time graphs

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
2.A.1	3.A.1.1: Express the motion of an object using narrative, mathematical,	Meeting Point Lab
3.A.1	and graphical representations. [SP 1.5, 2.1, 2.2]	Tortoise and Hare Lab
5.A.1	3.A.1.2: Design an experimental investigation of the motion of an object.	Graph Matching Lab
	[SP 4.2]	Mastering Physics
	3.A.1.3: Analyze experimental data describing the motion of an object and is able to express the results of the analysis using narrative, mathematical,	
	and graphical representations. [SP 5.1]	

QUARTER 1		
Topic: Dynamics		
Key Terms: system, force, free body diagrams, air resistance, inertia, weight, gravitational mass, inertial mass, center of mass		
Measurable Skills: ma	king predictions, problem solving, investigating, collecting interpreting and reco	rding data, constructing free body
diagrams, making grap	hs, collecting data, analyzing data	
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
1.C.1	1.C.1.1: Design an experiment for collecting data to determine the	Force plate demos
1.C.3	relationship between the net force exerted on an object its inertial mass and	Friction Lab
2.B.1	its acceleration. [SP 4.2]	
3.A.2	1.C.3.1: Design a plan for collecting data to measure gravitational mass and	
3.C.4	to measure inertial mass and to distinguish between the two experiments.	Newton's 2 nd Law Inquiry
4.A.1	[SP 4.2]	
4.A.2	2.B.1.1: Apply F=mg to calculate the gravitational force on an object with	Projectile Motion
4.A.3	mass <i>m</i> in a gravitational field of strength <i>g</i> in the context of the effects of a	Inquiry
	net force on objects and systems. [SP 2.2, 7.2]	Mastering Physics
	3.A.2.1: Represent forces in diagrams or mathematically using appropriately	
	labeled vectors with magnitude, direction, and units during the analysis of a	
	situation. [SP 1.1]	
	3.A.3.1: Analyze a scenario and make claims (develop arguments, justify	
	assertions) about the forces exerted on an object by other objects for	
	different types of forces or components of forces. [SP 6.4, 7.2]	
	3.A.3.2: Challenge a claim that an object can exert a force on itself. [SP 6.1]	
	3.A.3.3: Describe a force as an interaction between two objects and identify	
	both objects for any force. [SP 1.4]	
	3.A.4.1: Construct explanations of physical situations involving the	
	interaction of bodies using Newton's third law and the representation of	
	action-reaction pairs of forces. [SP 1.4, 6.2]	
	3.A.4.2: Use Newton's third law to make claims and predictions about the	
	action-reaction pairs of forces when two objects interact. [SP 6.4, 7.2]	
	3.A.4.3: Analyze situations involving interactions among several objects by	
	using free-body diagrams that include the application of Newton's third law	
	to identify forces. [SP 1.4]	

	QUARTER 1	
Topic: Dynamics		
Key Terms: system, fo	rce, free body diagrams, air resistance, inertia, weight, gravitational mass, inertia	l mass, center of mass
Measurable Skills: ma	aking predictions, problem solving, investigating, collecting interpreting and recor	ding data, constructing free body
diagrams, making grap	phs, collecting data, analyzing data	
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	3.B.1.1: Predict the motion of an object subject to forces exerted by several	
	objects using an application of Newton's second law in a variety of physical	
	situations with acceleration in one dimension. [SP 6.4, 7.2]	
	3.B.1.2: Design a plan to collect and analyze data for motion (static,	
	constant, or accelerating) from force measurements and carry out an	
	analysis to determine the relationship between the net force and the vector	
	sum of the individual forces. [SP 4.2, 5.1]	
	3.B.1.3: Re-express a free-body diagram representation into a mathematical	
	representation and solve the mathematical representation for the	
	acceleration of the object. [SP 1.5, 2.2]	
	3.B.2.1: Create and use free-body diagrams to analyze physical situations to	
	solve problems with motion qualitatively and quantitatively. [SP 1.1, 1.4,	
	2.2]	
	3.C.4.1: Make claims about various contact forces between objects based on	
	the microscopic cause of those forces. [SP 6.1]	
	3.C.4.2: Explain contact forces (tension, friction, normal, buoyant, spring) as	
	arising from interatomic electric forces and that they therefore have certain	
	directions. [SP 6.2]	
	4.A.1.1 Use representations of the center of mass of an isolated two-object	
	system to analyze the motion of the system qualitatively and semi	
	quantitatively. [SP 1.2, 1.4, 2.3, 6.4]	
	4.A.2.1: Make predictions about the motion of a system based on the fact	
	that acceleration is equal to the change in velocity per unit time, and velocity	
	is equal to the change in position per unit time. [SP 6.4]	
	4.A.2.2: Evaluate using given data whether all the forces on a system or	
	whether all the parts of a system have been identified. [SP 5.3]	

QUARTER 1

Topic: Dynamics

Key Terms: system, force, free body diagrams, air resistance, inertia, weight, gravitational mass, inertial mass, center of mass

Measurable Skills: making predictions, problem solving, investigating, collecting interpreting and recording data, constructing free body diagrams, making graphs, collecting data, analyzing data

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	4.A.2.3: Create mathematical models and analyze graphical relationships for	
	acceleration, velocity, and position of the center of mass of a system and use	
	them to calculate properties of the motion of the center of mass of a system.	
	[SP 1.4, 2.2]	
	4.A.3.1: Apply Newton's second law to systems to calculate the change in	
	the center-of-mass velocity when an external force is exerted on the system.	
	[SP 2.2]	
	4.A.3.2: Use visual or mathematical representations of the forces between	
	objects in a system to predict whether or not there will be a change in the	
	center-of-mass velocity of that system. [SP 1.3]	

QUARTER 2		
Topic: Circular Motion	and Gravitation	
Key Terms: tangential	speed, rotational speed, centripetal acceleration, centripetal force, universal law	v of acceleration, period, frequency,
apparent weightlessne	SS	
Measurable Skills: making predictions, problem solving, designing experiments, investigating, reading graphs, making graphs, collecting data,		
analyzing data		
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
1.C.3	1.C.3.1: Design a plan for collecting data to measure gravitational mass and	Flying Pigs Lab
2.B.1	to measure inertial mass and to distinguish between the two experiments.	Mastering Physics
3.A.2	[SP 4.2]	
3.A.3	2.B.1.1: Apply F=mg to calculate the gravitational force on an object with	
3.A.4	mass <i>m</i> in a gravitational field of strength <i>g</i> in the context of the effects of a	

net force on objects and systems. [SP 2.2, 7.2]

3.B.1

	QUARTER 2	
Topic: Circular Motion	and Gravitation	
Key Terms: tangential	speed, rotational speed, centripetal acceleration, centripetal force, universal law	of acceleration, period, frequency,
apparent weightlessne	ess	
Measurable Skills: ma	king predictions, problem solving, designing experiments, investigating, reading	graphs, making graphs, collecting data,
analyzing data		
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.B.2	2.B.2.1: Apply g=GMr2 to calculate the gravitational field due to an object	
3.C.1	with mass <i>M</i> , where the field is a vector directed toward the center of the	
3.C.2	object of mass M. [SP 2.2]	
3.G.1	2.B.2.2 : Approximate a numerical value of the gravitational field (<i>g</i>) near the	
4.A.2	surface of an object from its radius and mass relative to those of the Earth or	
	other reference objects. [SP 2.2]	
	3.A.2.1: Represent forces in diagrams or mathematically using appropriately	
	labeled vectors with magnitude, direction, and units during the analysis of a	
	situation. [SP 1.1]	
	3.A.3.1: Analyze a scenario and make claims (develop arguments, justify	
	assertions) about the forces exerted on an object by other objects for	
	different types of forces or components of forces. [SP 6.4, 7.2]	
	3.A.3.3: Describe a force as an interaction between two objects and identify	
	both objects for any force. [SP 1.4]	
	3.A.4.1: Construct explanations of physical situations involving the	
	interaction of bodies using Newton's third law and the representation of	
	action-reaction pairs of forces. [SP 1.4, 6.2]	
	3.A.4.2: Use Newton's third law to make claims and predictions about the	
	action-reaction pairs of forces when two objects interact. [SP 6.4, 7.2]	
	3.A.4.3: Analyze situations involving interactions among several objects by	
	using free-body diagrams that include the application of Newton's third law	
	to identify forces. [SP 1.4]	
	3.B.1.2: Design a plan to collect and analyze data for motion (static,	
	constant, or accelerating) from force measurements and carry out an	
	analysis to determine the relationship between the net force and the vector	
	sum of the individual forces. [SP 4.2, 5.1]	

	QUARTER 2	
Topic: Circular Motion	and Gravitation	
Key Terms: tangential	speed, rotational speed, centripetal acceleration, centripetal force, universal law	of acceleration, period, frequency,
apparent weightlessne	SS	
Measurable Skills: ma	king predictions, problem solving, designing experiments, investigating, reading	graphs, making graphs, collecting data,
analyzing data		
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	3.B.1.3: Re-express a free-body diagram representation into a mathematical	
	representation and solve the mathematical representation for the	
	acceleration of the object. [SP 1.5, 2.2]	
	3.B.2.1: Create and use free-body diagrams to analyze physical situations to	
	solve problems with motion qualitatively and quantitatively. [SP 1.1, 1.4,	
	2.2]	
	3.C.1.1: Use Newton's law of gravitation to calculate the gravitational force	
	the two objects exert on each other and use that force in contexts other	
	than orbital motion. [SP 2.2]	
	3.C.1.2: Use Newton's law of gravitation to calculate the gravitational force	
	between two objects and use that force in contexts involving orbital motion.	
	[SP 2.2]	
	3.C.2.2: Connect the concepts of gravitational force and electric force to	
	compare similarities and differences between the forces. [SP 7.2]	
	3.G.1.1: Articulate situations when the gravitational force is the dominant	
	force and when the electromagnetic, weak, and strong forces can be	
	ignored. [SP 7.1]	
	4.A.2.2: Evaluate using given data whether all the forces on a system or	
	whether all the parts of a system have been identified. [SP 5.3]	

QUARTER 2

Topic: Energy

Key Terms: work, joule, kinetic energy, gravitational potential energy, elastic potential energy, spring stiffness constant, conservative forces, non-conservative forces, law of conservation of energy, mechanical energy, power, watt

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.E.1	3.E.1.1: Make predictions about the changes in kinetic energy of an	
4.C.1	object based on considerations of the direction of the net force on the	Conservation of Energy Inquiry Lab
4.C.2	object as the object moves. [SP 6.4, 7.2]	
5.A.2	3.E.1.2: Use net force and velocity vectors to determine qualitatively	Mastering Physics
5.B.2	whether kinetic energy of an object would increase, decrease, or	
5.B.3	remain unchanged. [SP 1.4]	
5.B.4	3.E.1.3: Use force and velocity vectors to determine qualitatively or	
5.B.5	quantitatively the net force exerted on an object and qualitatively	
5.D.1	whether kinetic energy of that object would increase, decrease, or	
5.D.2	remain unchanged. [SP 1.4, 2.2]	
	3.E.1.4: Apply mathematical routines to determine the change in	
	kinetic energy of an object given the forces on the object and the	
	displacement of the object. [SP 2.2]	
	4.C.1.1: Calculate the total energy of a system and justify the	
	mathematical routines used in the calculation of component types of	
	energy within the system whose sum is the total energy. [SP 1.4, 2.1,	
	2.2]	
	4.C.1.2: Predict changes in the total energy of a system due to changes	
	in position and speed of objects or frictional interactions within the	
	system. [SP 6.4]	
	4.C.2.1: Make predictions about the changes in the mechanical energy	
	of a system when a component of an external force acts parallel or	
	antiparallel to the direction of the displacement of the center of mass.	
	[SP 6.4]	
	4.C.2.2: Apply the concepts of Conservation of Energy and the Work-	
	Energy theorem to determine qualitatively and/or quantitatively that	

QUARTER 2

Topic: Energy

Key Terms: work, joule, kinetic energy, gravitational potential energy, elastic potential energy, spring stiffness constant, conservative forces, non-conservative forces, law of conservation of energy, mechanical energy, power, watt

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	work done on a two-object system in linear motion will change the	
	kinetic energy of the center of mass of the system, the potential energy	
	of the systems, and/or the internal energy of the system. [SP 1.4, 2.2,	
	7.2]	
	5.A.2.1: Define open and closed systems for everyday situations and	
	apply conservation concepts for energy, charge, and linear momentum	
	to those situations. [SP 6.4, 7.2]	
	5.B.1.1: Set up a representation or model showing that a single object	
	can only have kinetic energy and use information about that object to	
	calculate its kinetic energy. [SP 1.4, 2.2]	
	5.B.1.2: Translate between a representation of a single object, which	
	can only have kinetic energy, and a system that includes the object,	
	which may have both kinetic and potential energies. [SP 1.5]	
	5.B.2.1: Calculate the expected behavior of a system using the object	
	model (i.e., by ignoring changes in internal structure) to analyze a	
	situation. Then, when the model fails, the student can justify the use of	
	conservation of energy principles to calculate the change in internal	
	energy due to changes in internal structure because the object is	
	actually a system. [SP 1.4, 2.1]	
	5.B.3.1: Describe and make qualitative and/or quantitative predictions	
	about everyday examples of systems with internal potential energy. [SP	
	2.2, 6.4, 7.2]	
	5.B.3.2: Make quantitative calculations of the internal potential energy	
	of a system from a description or diagram of that system. [SP 1.4, 2.2]	

QUARTER 2

Topic: Energy

Key Terms: work, joule, kinetic energy, gravitational potential energy, elastic potential energy, spring stiffness constant, conservative forces, non-conservative forces, law of conservation of energy, mechanical energy, power, watt

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	5.B.3.3: Apply mathematical reasoning to create a description of the	
	internal potential energy of a system from a description or diagram of	
	the objects and interactions in that system. [SP 1.4, 2.2]	
	5.B.4.1: Describe and make predictions about the internal energy of	
	systems. [SP 6.4, 7.2]	
	5.B.4.2: Calculate changes in kinetic energy and potential energy of a	
	system, using information from representations of that system. [SP 1.4,	
	2.1, 2.2]	
	5.B.5.1: Design an experiment and analyze data to examine how a	
	force exerted on an object or system does work on the object or	
	system as it moves through a distance. [SP 4.2, 5.1]	
	5.B.5.2: Design an experiment and analyze graphical data in which	
	interpretations of the area under a force-distance curve are needed to	
	determine the work done on or by the object or system.	
	[SP 4.2, 5.1]	
	5.B.5.3: Predict and calculate from graphical data the energy transfer	
	to or work done on an object or system from information about a force	
	exerted on the object or system through a distance [SP 1.4, 2.2, 6.4]	
	5.B.5.4: Make claims about the interaction between a system and its	
	environment in which the environment exerts a force on the system,	
	thus doing work on the system and changing the energy of the system	
	(kinetic energy plus potential energy). [SP 6.4, 7.2]	
	5.B.5.5: Predict and calculate the energy transfer to (i.e., the work	
	done on) an object or system from information about a force exerted	
	on the object or system through a distance. [SP 2.2, 6.4]	

QUARTER 2

Topic: Energy

Key Terms: work, joule, kinetic energy, gravitational potential energy, elastic potential energy, spring stiffness constant, conservative forces, non-conservative forces, law of conservation of energy, mechanical energy, power, watt

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	5.D.1.1: Make qualitative predictions about natural phenomena based	
	on conservation of linear momentum and restoration of kinetic energy	
	in elastic collisions. [SP 6.4, 7.2]	
	5.D.1.2: Apply the principles of conservation of momentum and	
	restoration of kinetic energy to reconcile a situation that appears to be	
	isolated and elastic, but in which data indicate that linear momentum	
	and kinetic energy are not the same after the interaction, by refining a	
	scientific question to identify interactions that have not been	
	considered. Students will be expected to solve qualitatively and/or	
	quantitatively for one-dimensional situations and only qualitatively in	
	two-dimensional situations. [SP 2.2, 3.2, 5.1, 5.3]	
	5.D.1.3: Apply mathematical routines appropriately to problems	
	involving elastic collisions in one dimension and justify the selection of	
	those mathematical routines based on conservation of momentum and	
	restoration of kinetic energy. [SP 2.1, 2.2]	
	5.D.1.4: Design an experimental test of an application of the principle	
	of the conservation of linear momentum, predict an outcome of the	
	experiment using the principle, analyze data generated by that	
	experiment whose uncertainties are expressed numerically, and	
	evaluate the match between the prediction and the outcome. [SP 4.2,	
	5.1, 5.3, 6.4]	
	5.D.1.5: Classify a given collision situation as elastic or inelastic, justify	
	the selection of conservation of linear momentum and restoration of	
	kinetic energy as the appropriate principles for analyzing an elastic	
	collision, solve for missing variables, and calculate their values.	
	[SP 2.1, 2.2]	

QUARTER 2

Topic: Energy

Key Terms: work, joule, kinetic energy, gravitational potential energy, elastic potential energy, spring stiffness constant, conservative forces, non-conservative forces, law of conservation of energy, mechanical energy, power, watt

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	5.D.2.1 : Predict qualitatively, in terms of linear momentum and kinetic	
	energy, how the outcome of a collision between two objects changes	
	depending on whether the collision is elastic or inelastic. [SP 6.4, 7.2]	
	5.D.2.3: Apply the conservation of linear momentum to a closed	
	system of objects involved in an inelastic collision to predict the change	
	in kinetic energy. [SP 6.4, 7.2]	

QUARTER 2		
Topic: Momentum		
Key Terms: law of conse	ervation of momentum, elastic collision, inelastic collision, impulse, momer	ntum
Measurable Skills: maki	ng predictions, problem solving, designing experiments, investigating, read	ling graphs, making graphs, collecting data,
analyzing data		
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.D.1	3.D.1.1: Justify the selection of data needed to determine the	Collision lab
3.D.2	relationship between the direction of the force acting on an object and	Unbreakable Egg Lab
4.B.1	the change in momentum caused by that force. [SP 4.1]	MOMENTUM ILD
4.B.2	3.D.2.1: Justify the selection of routines for the calculation of the	Mastering Physics
5.B.2	relationships between changes in momentum of an object, average	Mastering Physics
5.D.1	force, impulse, and time of interaction. [SP 2.1]	
5.D.2	3.D.2.2: Predict the change in momentum of an object from the	
5.D.3	average force exerted on the object and the interval of time during	
	which the force is exerted. [SP 6.4]	

QUARTER 2

Topic: Momentum

Key Terms: law of conservation of momentum, elastic collision, inelastic collision, impulse, momentum

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	3.D.2.3: Analyze data to characterize the change in momentum of an	
	object from the average force exerted on the object and the interval of	
	time during which the force is exerted. [SP 5.1]	
	3.D.2.4: Design a plan for collecting data to investigate the relationship	
	between changes in momentum and the average force exerted on an	
	object over time. [SP 4.2]	
	4.B.1.1: Calculate the change in linear momentum of a two-object	
	system with constant mass in linear motion from a representation of	
	the system (data, graphs, etc.). [SP 1.4, 2.2]	
	4.B.1.2: Analyze data to find the change in linear momentum for a	
	constant-mass system using the product of the mass and the change in	
	velocity of the center of mass. [SP 5.1]	
	4.B.2.1 : Apply mathematical routines to calculate the change in	
	momentum of a system by analyzing the average force exerted over a	
	certain time on the system. [SP 2.2]	
	4.B.2.2: Perform analysis on data presented as a force-time graph and	
	predict the change in momentum of a system. [SP 5.1]	
	5.A.2.1: Define open and closed systems for everyday situations and	
	apply conservation concepts for energy, charge, and linear momentum	
	to those situations. [SP 6.4, 7.2]	
	5.D.1.1: Make qualitative predictions about natural phenomena based	
	on conservation of linear momentum and restoration of kinetic energy	
	in elastic collisions. [SP 6.4, 7.2]	
	5.D.1.2: Apply the principles of conservation of momentum and	
	restoration of kinetic energy to reconcile a situation that appears to be	
	isolated and elastic, but in which data indicate that linear momentum	

QUARTER 2

Topic: Momentum

Key Terms: law of conservation of momentum, elastic collision, inelastic collision, impulse, momentum

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	and kinetic energy are not the same after the interaction, by refining a	
	scientific question to identify interactions that have not been	
	considered. Students will be expected to solve qualitatively and/or	
	quantitatively for one-dimensional situations and only qualitatively in	
	two-dimensional situations. [SP 2.2, 3.2, 5.1, 5.3]	
	5.D.1.3: Apply mathematical routines appropriately to problems	
	involving elastic collisions in one dimension and justify the selection of	
	those mathematical routines based on conservation of momentum and	
	restoration of kinetic energy. [SP 2.1, 2.2]	
	5.D.1.4: Design an experimental test of an application of the principle	
	of the conservation of linear momentum, predict an outcome of the	
	experiment using the principle, analyze data generated by that	
	experiment whose uncertainties are expressed numerically, and	
	evaluate the match between the prediction and the outcome. [SP 4.2,	
	5.1, 5.3, 6.4]	
	5.D.1.5: Classify a given collision situation as elastic or inelastic, justify	
	the selection of conservation of linear momentum and restoration of	
	kinetic energy as the appropriate principles for analyzing an elastic	
	collision, solve for missing variables, and calculate their values.	
	[SP 2.1, 2.2]	
	5.D.2.1: Predict qualitatively, in terms of linear momentum and kinetic	
	energy, how the outcome of a collision between two objects changes	
	depending on whether the collision is elastic or inelastic. [SP 6.4, 7.2]	
	5.D.2.2: Plan data collection strategies to test the law of conservation	
	of momentum in a two-object collision that is elastic or inelastic and	
	analyze the resulting data graphically. [SP 4.1, 4.2, 5.1]	

QUARTER 2

Topic: Momentum

Key Terms: law of conservation of momentum, elastic collision, inelastic collision, impulse, momentum

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	5.D.2.3: Apply the conservation of linear momentum to a closed	
	system of objects involved in an inelastic collision to predict the change	
	in kinetic energy	
	[SP 6.4, 7.2]	
	5.D.2.4: Analyze data that verify conservation of momentum in	
	collisions with and without an external friction force.	
	[SP 4.1, 4.2, 4.4, 5.1, 5.3]	
	5.D.2.5: Classify a given collision situation as elastic or inelastic, justify	
	the selection of conservation of linear momentum as the appropriate	
	solution method for an inelastic collision, recognize that there is a	
	common final velocity for the colliding objects in the totally inelastic	
	case, solve for missing variables, and calculate their values. [SP 2.1,	
	2.2]	
	5.D.3.1: Predict the velocity of the center of mass of a system when	
	there is no interaction outside of the system but there is an interaction	
	within the system (i.e., the student simply recognizes that interactions	
	within a system do not affect the center of mass motion of the system	
	and is able to determine that there is no external force). [SP 6.4]	

QUARTERS 2-3

Topic: Torque and Rotational Dynamics

Key Terms: equilibrium, statics, stable equilibrium, unstable equilibrium, neutral equilibrium, torque, fulcrum, center of mass, angular velocity, angular acceleration, moment of inertia, angular momentum, law of conservation of angular momentum, right hand rule

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.F.1	3.F.1.1: Use representations of the relationship between force and	STATICS ILD
3.F.2	torque. [SP 1.4]	Torque Lab
3.F.3	3.F.1.2: Compare the torques on an object caused by various forces.	Potational Dynamics Inquiry Lab
4.A.1	[SP 1.4]	
4.D.1	3.F.1.3: Estimate the torque on an object caused by various forces in	
4.D.2	comparison to other situations. [SP 2.3]	
4.D.3	3.F.1.4: Design an experiment and analyze data testing a question	Dizzy Physics Lab
5.E.1	about torques in a balanced rigid system.	Torque Lab
5.E.2	[SP 4.1, 4.2, 5.1]	
	3.F.1.5: Calculate torques on a two-dimensional system in static	Mastering Physics
	equilibrium, by examining a representation or model (such as a	
	diagram or physical construction). [SP 1.4, 2.2]	
	3.F.2.1: Make predictions about the change in the angular velocity	
	about an axis for an object when forces exerted on the object cause a	
	torque about that axis. [SP 6.4]	
	3.F.2.2: Plan data collection and analysis strategies designed to test	
	the relationship between a torque exerted on an object and the change	
	in angular velocity of that object about an axis. [SP 4.1, 4.2, 5.1]	
	3.F.3.1: Predict the behavior of rotational collision situations by the	
	same processes that are used to analyze linear collision situations using	
	an analogy between impulse and change of linear momentum and	
	angular impulse and change of angular momentum. [SP 6.4, 7.2]	
	3.F.3.2: Justify in an unfamiliar context or using representations	
	beyond equations the selection of a mathematical routine to solve for	
	the change in angular momentum of an object caused by torques	
	exerted on the object. [SP 2.1]	

QUARTERS 2-3

Topic: Torque and Rotational Dynamics

Key Terms: equilibrium, statics, stable equilibrium, unstable equilibrium, neutral equilibrium, torque, fulcrum, center of mass, angular velocity, angular acceleration, moment of inertia, angular momentum, law of conservation of angular momentum, right hand rule

Measurable Skills: making predictions, problem solving, designing experiments, investigating, reading graphs, making graphs, collecting data, analyzing data

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	3.F.3.3: Plan data collection and analysis strategies designed to test the	
	relationship between torques exerted on an object and the change in	
	angular momentum of that object.	
	[SP 4.1, 4.2, 5.1, 5.3]	
	4.A.1.1: Use representations of the center of mass of an isolated two-	
	object system to analyze the motion of the system qualitatively and	
	semi-quantitatively.	
	[SP 1.2, 1.4, 2.3, 6.4]	
	4.D.1.1: Describe a representation and use it to analyze a situation in	
	which several forces exerted on a rotating system of rigidly connected	
	objects change the angular velocity and angular momentum of the	
	system. [SP 1.2, 1.4]	
	4.D.1.2: Plan data collection strategies designed to establish that	
	torque, angular velocity, angular acceleration, and angular momentum	
	can be predicted accurately when the variables are treated as being	
	clockwise or counterclockwise with respect to a well-defined axis of	
	rotation, and refine the research question based on the examination of	
	data. [SP 3.2, 4.1, 4.2, 5.1, 5.3]	
	4.D.2.1: Describe a model of a rotational system and use that model to	
	analyze a situation in which angular momentum changes due to	
	interaction with other objects or systems. [SP 1.2, 1.4]	
	4.D.2.2: Plan a data collection and analysis strategy to determine the	
	change in angular momentum of a system and relate it to interactions	
	with other objects and systems. [SP 4.2]	
	4.D.3.1: Use appropriate mathematical routines to calculate values for	
	initial or final angular momentum, or change in angular momentum of	

Board of Education Adopted: May 13, 2019

QUARTERS 2-3

Topic: Torque and Rotational Dynamics

Key Terms: equilibrium, statics, stable equilibrium, unstable equilibrium, neutral equilibrium, torque, fulcrum, center of mass, angular velocity, angular acceleration, moment of inertia, angular momentum, law of conservation of angular momentum, right hand rule

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	a system, or average torque or time during which the torque is exerted	
	in analyzing a situation involving torque and angular momentum. [SP	
	4.3]	
	4.D.3.2 : Plan a data collection strategy designed to test the relationship	
	between the change in angular momentum of a system and the	
	product of the average torque applied to the system and the time	
	interval during which the torque is exerted. [SP 4.1, 4.2]	
	5.E.1.1: Make qualitative predictions about the angular momentum of	
	a system for a situation in which there is no net external torque. [SP	
	6.4, 7.2]	
	5.E.1.2: Make calculations of quantities related to the angular	
	momentum of a system when the net external torque on the system is	
	zero. [SP 2.1, 2.2]	
	5.E.2.1: Describe or calculate the angular momentum and rotational	
	inertia of a system in terms of the locations and velocities of objects	
	that make up the system. Students are expected to do qualitative	
	reasoning with compound objects. Students are expected to do	
	calculations with a fixed set of extended objects and point masses. [SP	
	2.2]	

QUARTER 3

Topic: Simple Harmonic Motion

Key Terms: simple harmonic motion, amplitude, frequency, period, wavelength, sinusoidal, pendulum, damping, resonance

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.B.3	3.B.3.1: Predict which properties determine the motion of a simple	
5.B.2	harmonic oscillator and what the dependence of the motion is on	Pendulum Inquiry Lab
5.B.3	those properties. [SP 6.4, 7.2]	
5.B.4	3.B.3.2: Design a plan and collect data in order to ascertain the	Mastering Dhysics
	characteristics of the motion of a system undergoing oscillatory motion	Mastering Physics
	caused by a restoring force. [SP 4.2]	
	3.B.3.3: Analyze data to identify qualitative or quantitative	
	relationships between given values and variables (i.e., force,	
	displacement, acceleration, velocity, period of motion, frequency,	
	spring constant, string length, mass) associated with objects in	
	oscillatory motion to use that data to determine the value of an	
	unknown. [SP 2.2, 5.1]	
	3.B.3.4: Construct a qualitative and/or a quantitative explanation of	
	oscillatory behavior given evidence of a restoring force.	
	[SP 2.2, 6.2]	
	5.B.2.1: Calculate the expected behavior of a system using the object	
	model (i.e., by ignoring changes in internal structure) to analyze a	
	situation. Then, when the model fails, the student can justify the use of	
	conservation of energy principles to calculate the change in internal	
	energy due to changes in internal structure because the object is	
	actually a system. [SP 1.4, 2.1]	
	5.B.3.1: Describe and make qualitative and/or quantitative predictions	
	about everyday examples of systems with internal potential energy. [SP	
	2.2, 6.4, 7.2]	
	5.B.3.2: Make quantitative calculations of the internal potential energy	
	of a system from a description or diagram of that system. [SP 1.4, 2.2]	

QUARTER 3

Topic: Simple Harmonic Motion

Key Terms: simple harmonic motion, amplitude, frequency, period, wavelength, sinusoidal, pendulum, damping, resonance

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	5.B.3.3: Apply mathematical reasoning to create a description of the	
	internal potential energy of a system from a description or diagram of	
	the objects and interactions in that system. [SP 1.4, 2.2]	
	5.B.4.1: Describe and make predictions about the internal energy of	
	systems. [SP 6.4, 7.2]	
	5.B.4.2: Dalculate changes in kinetic energy and potential energy of a	
	system, using information from representations of that system. [SP 1.4,	
	2.1, 2.2]	

QUARTER 3			
Topic: Mechanical Wave	s and Sound		
Key Terms: transverse w	ave, longitudinal wave, wave speed, wavelength, constructive interference	e, destructive interference, wave front,	
standing waves, node, an	ntinode		
Measurable Skills: maki	ng predictions, problem solving, designing experiments, investigating, reac	ling graphs, making graphs, collecting data,	
analyzing data			
AP College Board	Student Learning Targets	Learning Activities/Investigations	
Essential Knowledge	(AP Learning Objectives and Science Practices)		
6.A.1	6.A.1.1: Use a visual representation to construct an explanation of the	Wayos Inquiny Lab	
6.A.2	distinction between transverse and longitudinal waves by focusing on	Waves on a string problem	
6.A.3	the vibration that generates the wave. [SP 6.2]	waves on a string problem	
6.A.4	6.A.1.2: Describe representations of transverse and longitudinal waves.	Speed of Sound Lab	
6.B.1	[SP 1.2]	Speed of Sound Lab	
6.B.2	6.A.2.1: Describe sound in terms of transfer of energy and momentum	Mastering Physics	
6.B.4	in a medium and relate the concepts to everyday examples. [SP 6.4,	wastering Physics	
6.B.5	7.2]		

	QUARTER 3	
Topic: Mechanical Wave	es and Sound	
Key Terms: transverse w	vave, longitudinal wave, wave speed, wavelength, constructive interference	, destructive interference, wave front,
standing waves, node, a	ntinode	
Measurable Skills: mak	ing predictions, problem solving, designing experiments, investigating, read	ing graphs, making graphs, collecting data,
analyzing data		
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
6.D.1	6.A.3.1: Use graphical representation of a periodic mechanical wave to	
6.D.2	determine the amplitude of the wave. [SP 1.4]	
6.D.3		
6.D.4	6.A.4.1: Explain and/or predict qualitatively how the energy carried by	
6.D.5	a sound wave relates to the amplitude of the wave, and/or apply this	
	concept to a real-world example. [SP 6.4]	
	6.B.1.1: Use a graphical representation of a periodic mechanical wave	
	(position versus time) to determine the period and frequency of the	
	wave and describe how a change in the frequency would modify	
	features of the representation. [SP 1.4, 2.2]	
	6.B.2.1: Use a visual representation of a periodic mechanical wave to	
	determine wavelength of the wave. [SP 1.4]	
	6.B.4.1: Design an experiment to determine the relationship between	
	periodic wave speed, wavelength, and frequency and relate these	
	concepts to everyday examples. [SP 4.2, 5.1, 7.2]	
	6.B.5.1: Create or use a wave front diagram to demonstrate or	
	interpret qualitatively the observed frequency of a wave, dependent	
	upon relative motions of source and observer. [SP 1.4]	
	6.D.1.1: Use representations of individual pulses and construct	
	representations to model the interaction of two wave pulses to analyze	
	the superposition of two pulses. [SP 1.1, 1.4]	
	6.D.1.2: Design a suitable experiment and analyze data illustrating the	
	superposition of mechanical waves (only for wave pulses or standing	
	waves). [SP 4.2, 5.1]	

	т	Λ			5
U.	U	A	ĸ	R	5

Topic: Mechanical Waves and Sound

Key Terms: transverse wave, longitudinal wave, wave speed, wavelength, constructive interference, destructive interference, wave front, standing waves, node, antinode

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	6.D.1.3: Design a plan for collecting data to quantify the amplitude	
	variations when two or more traveling waves or wave pulses interact in	
	a given medium. [SP 4.2]	
	6.D.2.1: Analyze data or observations or evaluate evidence of the	
	interaction of two or more traveling waves in one or two dimensions	
	(i.e., circular wave fronts) to evaluate the variations in resultant	
	amplitudes. [SP 5.1]	
	6.D.3.1: Refine a scientific question related to standing waves and	
	design a detailed plan for the experiment that can be conducted to	
	examine the phenomenon qualitatively or quantitatively. [SP 2.1, 3.2,	
	4.2]	
	6.D.3.2 : Predict properties of standing waves that result from the	
	addition of incident and reflected waves that are confined to a region	
	and have nodes and antinodes. [SP 6.4]	
	6.D.3.3: Plan data collection strategies, predict the outcome based on	
	the relationship under test, perform data analysis, evaluate evidence	
	compared to the prediction, explain any discrepancy and, if necessary,	
	revise the relationship among variables responsible for establishing	
	standing waves on a string or in a column of air. [SP 3.2, 4.1, 5.1, 5.2,	
	6.D.3.4: Describe representations and models of situations in which	
	standing waves result from the addition of incident and reflected	
	waves contined to a region. [SP 1.2]	
	6.D.4.1: Challenge with evidence the claim that the wavelengths of	
	standing waves are determined by the frequency of the source	
	regardless of the size of the region. [SP 1.5, 6.1]	

QUARTER 3

Topic: Mechanical Waves and Sound

Key Terms: transverse wave, longitudinal wave, wave speed, wavelength, constructive interference, destructive interference, wave front, standing waves, node, antinode

Measurable Skills: making predictions, problem solving, designing experiments, investigating, reading graphs, making graphs, collecting data, analyzing data

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	6.D.4.2: Calculate wavelengths and frequencies (if given wave speed)	
	of standing waves based on boundary conditions and length of region	
	within which the wave is confined, and calculate numerical values of	
	wavelengths and frequencies. Examples should include musical	
	instruments. [SP 2.2]	
	6.D.5.1: Use a visual representation to explain how waves of slightly	
	different frequency give rise to the phenomenon of beats. [SP 1.2]	

0	
<u> </u>	

Topic: Electric Charge and Electric Force

Key Terms: electric charge, conductor, insulator, conservation of charge, conduction, induction, Coulomb's Law

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
1.B.1	1.B.1.1: Make claims about natural phenomena based on conservation	Tape Lab
1.B.2	of electric charge. [SP 6.4]	Electrostatics Inquiry
1.B.3	1.B.1.2: Make predictions, using the conservation of electric charge,	
3.C.2	about the sign and relative quantity of net charge of objects or systems	Mastering Physics
5.A.2	after various charging processes, including conservation of charge in	
	simple circuits. [SP 6.4, 7.2]	
	1.B.2.1 : Construct an explanation of the two-charge model of electric	
	charge based on evidence produced through scientific practices. [SP	
	6.2]	

QUARTER 4

Topic: Electric Charge and Electric Force

Key Terms: electric charge, conductor, insulator, conservation of charge, conduction, induction, Coulomb's Law

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	1.B.3.1: Challenge the claim that an electric charge smaller than the	
	elementary charge has been isolated.	
	[SP 1.5, 6.1, 7.2]	
	3.C.2.1: Use Coulomb's law qualitatively and quantitatively to make	
	predictions about the interaction between two electric point charges.	
	[SP 2.2, 6.4]	
	3.C.2.2 : Connect the concepts of gravitational force and electric force	
	to compare similarities and differences between the forces. [SP 7.2]	
	5.A.2.1: Define open and closed systems for everyday situations and	
	apply conservation concepts for energy, charge, and linear momentum	
	to those situations. [SP 6.4, 7.2]	

QUARTER 4			
Topic: DC Circuit			
Key Terms: electric pote	ntial, potential difference, voltage, voltmeter, electric current, ampere, an	nmeter, conventional current, resistance,	
ohms, Ohm's law, direct current, battery, emf, internal resistance, series, parallel, Kirchhoff's rules, loop rule, junction rule			
Measurable Skills: making predictions, problem solving, designing experiments, investigating, reading graphs, making graphs, collecting data,			
analyzing data			
AP College Board	Student Learning Targets	Learning Activities/Investigations	
Essential Knowledge	(AP Learning Objectives and Science Practices)		
1.B.1	1.B.1.1: Make claims about natural phenomena based on conservation	Light Bulls Demo (series and parallel)	
1.E.1	of electric charge. [SP 6.4]	Light Buibs Demo (series and parallel)	
1.E.2	1.B.1.2: Make predictions, using the conservation of electric charge,	DC circuit PhET	
5.B.9	about the sign and relative quantity of net charge of objects or systems	LED Playdoh circuits	
5.C.3	after various charging processes, including conservation of charge in	Mastering Physics	
	simple circuits. [SP 6.4, 7.2]		

QUARTER 4

Topic: DC Circuit

Key Terms: electric potential, potential difference, voltage, voltmeter, electric current, ampere, ammeter, conventional current, resistance, ohms, Ohm's law, direct current, battery, emf, internal resistance, series, parallel, Kirchhoff's rules, loop rule, junction rule

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	1.E.2.1: Choose and justify the selection of data needed to determine	
	resistivity for a given material. [SP 4.1]	
	5.B.9.1: Construct or interpret a graph of the energy changes within an	
	electrical circuit with only a single battery and resistors in series and/or	
	in, at most, one parallel branch as an application of the conservation of	
	energy (Kirchhoff's loop rule). [SP 1.1, 1.4]	
	5.B.9.2: Apply conservation of energy concepts to the design of an	
	experiment that will demonstrate the validity of Kirchhoff's loop rule	
	($\Sigma\Delta V=0$) in a circuit with only a battery and resistors either in series or	
	in, at most, one pair of parallel branches. [SP 4.2, 6.4, 7.2]	
	5.B.9.3: Apply conservation of energy (Kirchhoff's loop rule) in	
	calculations involving the total electric potential difference for	
	complete circuit loops with only a single battery and resistors in series	
	and/or in, at most, one parallel branch. [SP 2.2, 6.4, 7.2]	
	5.C.3.1: Apply conservation of electric charge (Kirchhoff's junction rule)	
	to the comparison of electric current in various segments of an	
	electrical circuit with a single battery and resistors in series and in, at	
	most, one parallel branch and predict how those values would change	
	if configurations of the circuit are changed. [SP 6.4, 7.2]	
	5.C.3.2: Design an investigation of an electrical circuit with one or more	
	resistors in which evidence of conservation of electric charge can be	
	collected and analyzed. [SP 4.1, 4.2, 5.1]	
	5.C.3.3: Use a description or schematic diagram of an electrical circuit	
	to calculate unknown values of current in various segments or	
	branches of the circuit. [SP 1.4, 2.2]	

Science Practice 1. The student can use representations and models to communicate scientific phenomena and solve scientific problems.

1.1 The student can create representations and models of natural or man-made phenomena and systems in the domain.

1.2 The student can *describe representations and models* of natural or man-made phenomena and systems in the domain.

1.3 The student can *refine representations and models of natural or man–made phenomena and systems* in the domain.

1.4 The student can *use representations and models* to analyze situations or solve problems qualitatively and quantitatively.

1.5 The student can *re-express key elements of natural phenomena across multiple representations* in the domain.

Science Practice 2. The student can use mathematics appropriately.

2.1 The student can *justify the selection of a mathematical routine* to solve problems.

2.2 The student can apply mathematical routines to quantities that describe natural phenomena.

2.3 The student can estimate numerically quantities that describe natural phenomena.

Science Practice 3. The student can engage in scientific questioning to extend thinking or to guide investigations within the context of the AP[®] course.

3.1 The student can *pose scientific questions*.

3.2 The student can refine scientific questions.

3.3 The student can *evaluate scientific questions*.

Science Practice 4. The student can plan and implement data collection strategies appropriate to a particular scientific question.

4.1 The student can *justify the selection of the kind of data* needed to answer a particular scientific question.

4.2 The student can design a plan for collecting data to answer a particular scientific question.

4.3 The student can collect data to answer a particular scientific question.

4.4 The student can evaluate sources of data to answer a particular scientific question.

Science Practice 5. The student can perform data analysis and evaluation of evidence.

5.1 The student can analyze data to identify patterns or relationships.

5.2 The student can refine observations and measurements based on data analysis.

5.3 The student can evaluate the evidence provided by data sets in relation to a particular scientific question.

Science Practice 6. The student can work with scientific explanations and theories.

6.1 The student can justify claims with evidence.

6.2 The student can construct explanations of phenomena based on evidence produced through scientific practices.

- 6.3 The student can articulate the reasons that scientific explanations and theories are refined or replaced.
- 6.4 The student can make claims and predictions about natural phenomena based on scientific theories and models.
- 6.5 The student can evaluate alternative scientific explanations.

Science Practice 7. The student is able to connect and relate knowledge across various scales, concepts, and representations in and across domains.

7.1 The student can *connect phenomena and models* across spatial and temporal scales.

7.2 The student can *connect concepts* in and across domain(s) to generalize or extrapolate in and/or across enduring understandings and/or big ideas.

District Instructional Resource:

Giancoli Physics: Principles with Applications AP Edition (2014) / Pearson (6-year online subscription: 2019-2020 to 2024-2025)

Standards Alignment:

AP Physics 1: Algebra-Based Course and Exam Description (2017) – retrieved Jan. 2, 2019 <u>https://apcentral.collegeboard.org/pdf/ap-physics-1-course-and-exam-description.pdf?course=ap-physics-1</u>